HomeOpiniónO paradoxo de MADIA

O paradoxo de MADIA

Este paradoxo que se estuda na facultade de matemáticas de Santiago de Compostela foi descuberto por un monfortino hai algo máis de 30 anos.

Publicado o

POR
M.D.A.
- Advertisement -

Nos últimos anos vimos como os briks de bebidas cambiaron de formato, pasando de ser rectangulares a cadrados. Isto ten unha explicación económica, o brik cadrado a igual capacidade utiliza menos material. A explicación atopámola no paradoxo de MADIA. A igual perímetro, que ten máis superficie, un cadrado ou un rectángulo? Este paradoxo que se estuda na facultade de matemáticas de Santiago de Compostela foi descuberto por un monfortino hai algo máis de 30 anos.

A resposta máis lóxica e cunha porcentaxe moi elevada respecto a outras é: Os dous teñen a mesma superficie. Pois non é así. A igual perímetro un cadrado ten máis superficie que un rectángulo. Poñemos un exemplo: Un cadrado de 4 de lado o seu perímetro é 16, o mesmo que a súa superficie. Un rectángulo de 6X2 o seu perímetro é 16, mentres que a súa superficie é 12.

Vemos como a resposta á pregunta formulada polo paradoxo de MADIA é o cadrado. Aínda que poida parecer algo banal, este paradoxo está a aplicarse no aforro de materiais á hora da construción ou fabricación de depósitos e envases variados. Se nos fixamos nos briks de bebidas observaremos que se foron convertendo de rectangulares a cadrados, o que significa un aforro nos materiais utilizados na fabricación do envase, xa que a diferenza entre ambos é de 11 milímetros de perímetro para a mesma altura. Se multiplicamos eses 11 milímetros por miles de envases podemos empezar a ter unha idea do aforro que supón aos envasadores de bebidas.

Por esa mesma regra de 3 un círculo a igual perímetro ten máis superficie que un cadrado. Tamén os tanques de auga para rega, de combustibles, etc… na súa maioría fanse redondos, xa que seguindo o paradoxo de MADIA cos mesmos materiais almacénase máis cantidade de líquido. Ademais de que un depósito cilíndrico ten máis resistencia ao carecer de zonas débiles como os cadrados e rectangulares.

Os módulos fotovoltaicos cadrados a igual rendemento que os rectangulares, empregan menos material no marco que estes.

E se aplicamos o paradoxo de MADIA no campo temos que nos vai a custar menos pechar unha leira cadrada que unha rectangular para a mesma superficie.

Poñemos outro exemplo: Unha leira de 100mtrs de longo por 20 de ancho son 2.000 mtrs cadrados. Outra leira de 50X40 tamén son 2.000 mtrs cadrados de superficie. Con todo construír o peche perimetral de ambas as leiras supón unha diferenza bastante considerable. A leira de 100X20 ten un perímetro de 240 metros, mentres que na de 50X40 o perímetro é de 180 mtrs.

De feito xa hai peritos agrónomos utilizando o paradoxo de MADIA para facer a valoración de leiras ao incluír o perímetro das mesmas para estimar o custo do seu valado. Como vemos a aplicación do paradoxo de MADIA, xurdida desde a observación, contribúe ao aforro no emprego de materiais á hora da elección da forma no deseño dun recipiente, un envase, un depósito, calquera figura xeométrica que deba conter algo xa sexa líquido ou sólido, xa que vai determinar o emprego dos materiais en cantidade e, polo tanto nos seus custos.

O paradoxo de MADIA foi enunciado en 1.992 por Manuel Díaz Ares cando calculaba os custos para a construción dun depósito para a auga de rega da súa horta

ÚLTIMAS

O PP lucense esixe garantir a seguridade no tramo de vía Monforte-Ourense

Os deputados do PP lucense amosan "a súa preocupación ante os problemas detectados durante...

A Garda Civil investiga a un gandeiro de Chantada por suposto delito de malos tratos animais

Segundo informaron fontes da Comandancia, nunha inspección realizada por axentes da Garda Civil e...

20 persoas rematan formación no Obradoiro de Emprego de Monforte que pronto comezará unha nova edición

Os participantes no obradoiro levaron a cabo a rehabilitación e restauración das naves da...

A Vicepresidencia da Deputación ofrece 50.000€ anuais para o Matadoiro de Sarria

Na xuntanza, na que participaron o alcalde de Sarria, Claudio Garrido, a alcaldesa de...